Skip to content

timeseries

Time series feature engineering engine.

Extracts statistical, frequency, and temporal features from time series data. Inspired by TSFresh but with better integration and LLM capabilities.

TimeSeriesEngine

Bases: BaseEngine

Time series feature engineering engine.

Extracts comprehensive features from time series data including: - Basic statistics (mean, std, min, max, etc.) - Distribution features (skewness, kurtosis, quantiles) - Autocorrelation features - Frequency domain features (FFT) - Peak and trough features - Trend features - Rolling window statistics

Parameters:

Name Type Description Default
features list

Feature groups to extract

['basic_stats', 'distribution', 'autocorrelation']
window_sizes list

Window sizes for rolling features

[5, 10, 20]
max_features int

Maximum number of features to generate

None

Examples:

>>> engine = TimeSeriesEngine(features=['basic_stats', 'autocorrelation'])
>>> X_features = engine.fit_transform(time_series_df)
Source code in featcopilot/engines/timeseries.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
class TimeSeriesEngine(BaseEngine):
    """
    Time series feature engineering engine.

    Extracts comprehensive features from time series data including:
    - Basic statistics (mean, std, min, max, etc.)
    - Distribution features (skewness, kurtosis, quantiles)
    - Autocorrelation features
    - Frequency domain features (FFT)
    - Peak and trough features
    - Trend features
    - Rolling window statistics

    Parameters
    ----------
    features : list, default=['basic_stats', 'distribution', 'autocorrelation']
        Feature groups to extract
    window_sizes : list, default=[5, 10, 20]
        Window sizes for rolling features
    max_features : int, optional
        Maximum number of features to generate

    Examples
    --------
    >>> engine = TimeSeriesEngine(features=['basic_stats', 'autocorrelation'])
    >>> X_features = engine.fit_transform(time_series_df)
    """

    # Feature extraction functions (tsfresh-inspired)
    FEATURE_EXTRACTORS = {
        "basic_stats": "_extract_basic_stats",
        "distribution": "_extract_distribution",
        "autocorrelation": "_extract_autocorrelation",
        "peaks": "_extract_peaks",
        "trends": "_extract_trends",
        "rolling": "_extract_rolling",
        "fft": "_extract_fft",
        "entropy": "_extract_entropy",
        "energy": "_extract_energy",
        "complexity": "_extract_complexity",
        "counts": "_extract_counts",
    }

    def __init__(
        self,
        features: Optional[list[str]] = None,
        window_sizes: Optional[list[int]] = None,
        max_features: Optional[int] = None,
        verbose: bool = False,
        **kwargs,
    ):
        config = TimeSeriesEngineConfig(
            features=features or ["basic_stats", "distribution", "autocorrelation"],
            window_sizes=window_sizes or [5, 10, 20],
            max_features=max_features,
            verbose=verbose,
            **kwargs,
        )
        super().__init__(config=config)
        self.config: TimeSeriesEngineConfig = config
        self._time_columns: list[str] = []
        self._feature_set = FeatureSet()

    def fit(
        self,
        X: Union[pd.DataFrame, np.ndarray],
        y: Optional[Union[pd.Series, np.ndarray]] = None,
        time_column: Optional[str] = None,
        **kwargs,
    ) -> "TimeSeriesEngine":
        """
        Fit the engine to identify time series columns.

        Parameters
        ----------
        X : DataFrame or ndarray
            Input data (each row is a time series or time-indexed data)
        y : Series or ndarray, optional
            Target variable
        time_column : str, optional
            Column containing timestamps

        Returns
        -------
        self : TimeSeriesEngine
        """
        X = self._validate_input(X)

        # Identify numeric columns for time series analysis
        self._time_columns = X.select_dtypes(include=[np.number]).columns.tolist()

        if self.config.verbose:
            logger.info(f"TimeSeriesEngine: Found {len(self._time_columns)} numeric columns")

        self._is_fitted = True
        return self

    def transform(self, X: Union[pd.DataFrame, np.ndarray], **kwargs) -> pd.DataFrame:
        """
        Extract time series features from input data.

        Parameters
        ----------
        X : DataFrame or ndarray
            Input data

        Returns
        -------
        X_features : DataFrame
            Extracted features
        """
        if not self._is_fitted:
            raise RuntimeError("Engine must be fitted before transform")

        X = self._validate_input(X)
        features_dict = {}

        for col in self._time_columns:
            series = X[col].values

            for feature_group in self.config.features:
                if feature_group in self.FEATURE_EXTRACTORS:
                    method_name = self.FEATURE_EXTRACTORS[feature_group]
                    method = getattr(self, method_name)
                    extracted = method(series, col)
                    features_dict.update(extracted)

        # For DataFrames with multiple rows, extract features across the entire column
        if len(X) > 1:
            # Each column is treated as a single time series
            features_dict = {}
            for col in self._time_columns:
                series = X[col].values

                for feature_group in self.config.features:
                    if feature_group in self.FEATURE_EXTRACTORS:
                        method_name = self.FEATURE_EXTRACTORS[feature_group]
                        method = getattr(self, method_name)
                        extracted = method(series, col)
                        features_dict.update(extracted)

        result = pd.DataFrame([features_dict])

        self._feature_names = list(result.columns)

        if self.config.verbose:
            logger.info(f"TimeSeriesEngine: Extracted {len(self._feature_names)} features")

        return result

    def _extract_per_row(self, X: pd.DataFrame) -> pd.DataFrame:
        """Extract features for each row (multiple time series)."""
        all_features = []

        for idx in range(len(X)):
            row_features = {}
            for col in self._time_columns:
                value = X[col].iloc[idx]
                if isinstance(value, (list, np.ndarray)):
                    series = np.array(value)
                else:
                    # Single value - create minimal features
                    row_features[f"{col}_value"] = value
                    continue

                for feature_group in self.config.features:
                    if feature_group in self.FEATURE_EXTRACTORS:
                        method_name = self.FEATURE_EXTRACTORS[feature_group]
                        method = getattr(self, method_name)
                        extracted = method(series, col)
                        row_features.update(extracted)

            all_features.append(row_features)

        return pd.DataFrame(all_features)

    def _extract_basic_stats(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract basic statistical features."""
        features = {}
        prefix = col

        if len(series) == 0:
            return features

        features[f"{prefix}_mean"] = np.nanmean(series)
        features[f"{prefix}_std"] = np.nanstd(series)
        features[f"{prefix}_min"] = np.nanmin(series)
        features[f"{prefix}_max"] = np.nanmax(series)
        features[f"{prefix}_range"] = features[f"{prefix}_max"] - features[f"{prefix}_min"]
        features[f"{prefix}_median"] = np.nanmedian(series)
        features[f"{prefix}_sum"] = np.nansum(series)
        features[f"{prefix}_length"] = len(series)
        features[f"{prefix}_var"] = np.nanvar(series)

        # Coefficient of variation
        if features[f"{prefix}_mean"] != 0:
            features[f"{prefix}_cv"] = features[f"{prefix}_std"] / abs(features[f"{prefix}_mean"])
        else:
            features[f"{prefix}_cv"] = 0

        return features

    def _extract_distribution(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract distribution-based features."""
        from scipy import stats

        features = {}
        prefix = col

        if len(series) < 4:
            return features

        # Remove NaN values
        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 4:
            return features

        features[f"{prefix}_skewness"] = stats.skew(series_clean)
        features[f"{prefix}_kurtosis"] = stats.kurtosis(series_clean)

        # Quantiles
        for q in [0.1, 0.25, 0.75, 0.9]:
            features[f"{prefix}_q{int(q*100)}"] = np.quantile(series_clean, q)

        # IQR
        q75, q25 = np.quantile(series_clean, [0.75, 0.25])
        features[f"{prefix}_iqr"] = q75 - q25

        return features

    def _extract_autocorrelation(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract autocorrelation features."""
        features = {}
        prefix = col

        if len(series) < self.config.n_autocorr_lags + 1:
            return features

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < self.config.n_autocorr_lags + 1:
            return features

        # Compute autocorrelation for different lags
        var = np.var(series_clean)

        if var == 0:
            return features

        for lag in range(1, min(self.config.n_autocorr_lags + 1, len(series_clean))):
            autocorr = np.corrcoef(series_clean[:-lag], series_clean[lag:])[0, 1]
            if not np.isnan(autocorr):
                features[f"{prefix}_autocorr_lag{lag}"] = autocorr

        return features

    def _extract_peaks(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract peak and trough related features."""
        from scipy.signal import find_peaks

        features = {}
        prefix = col

        if len(series) < 3:
            return features

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 3:
            return features

        # Find peaks
        peaks, _ = find_peaks(series_clean)
        troughs, _ = find_peaks(-series_clean)

        features[f"{prefix}_n_peaks"] = len(peaks)
        features[f"{prefix}_n_troughs"] = len(troughs)

        if len(peaks) > 0:
            features[f"{prefix}_peak_mean"] = np.mean(series_clean[peaks])
            features[f"{prefix}_peak_max"] = np.max(series_clean[peaks])

        if len(troughs) > 0:
            features[f"{prefix}_trough_mean"] = np.mean(series_clean[troughs])
            features[f"{prefix}_trough_min"] = np.min(series_clean[troughs])

        return features

    def _extract_trends(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract trend-related features."""
        features = {}
        prefix = col

        if len(series) < 2:
            return features

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 2:
            return features

        # Linear trend (slope)
        x = np.arange(len(series_clean))
        slope, intercept = np.polyfit(x, series_clean, 1)
        features[f"{prefix}_trend_slope"] = slope
        features[f"{prefix}_trend_intercept"] = intercept

        # First and last differences
        features[f"{prefix}_first_value"] = series_clean[0]
        features[f"{prefix}_last_value"] = series_clean[-1]
        features[f"{prefix}_change"] = series_clean[-1] - series_clean[0]

        # Mean absolute change
        features[f"{prefix}_mean_abs_change"] = np.mean(np.abs(np.diff(series_clean)))

        # Mean change
        features[f"{prefix}_mean_change"] = np.mean(np.diff(series_clean))

        return features

    def _extract_rolling(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract rolling window features."""
        features = {}
        prefix = col

        series_clean = series[~np.isnan(series)]

        for window in self.config.window_sizes:
            if len(series_clean) < window:
                continue

            # Convert to pandas for rolling operations
            s = pd.Series(series_clean)

            rolling = s.rolling(window=window)
            features[f"{prefix}_rolling{window}_mean_of_means"] = rolling.mean().mean()
            features[f"{prefix}_rolling{window}_max_of_means"] = rolling.mean().max()
            features[f"{prefix}_rolling{window}_std_of_stds"] = rolling.std().std()

        return features

    def _extract_fft(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract FFT (frequency domain) features."""
        features = {}
        prefix = col

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 4:
            return features

        # Compute FFT
        fft_vals = np.fft.fft(series_clean)
        fft_abs = np.abs(fft_vals)

        # Get first N coefficients (excluding DC component)
        n_coeffs = min(self.config.n_fft_coefficients, len(fft_abs) // 2)

        for i in range(1, n_coeffs + 1):
            features[f"{prefix}_fft_coeff_{i}"] = fft_abs[i]

        # Spectral energy
        features[f"{prefix}_spectral_energy"] = np.sum(fft_abs**2)

        # Dominant frequency
        dominant_idx = np.argmax(fft_abs[1 : len(fft_abs) // 2]) + 1
        features[f"{prefix}_dominant_freq_idx"] = dominant_idx

        return features

    def _extract_entropy(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract entropy-based features (tsfresh-inspired)."""
        features = {}
        prefix = col

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 4:
            return features

        # Binned entropy
        try:
            hist, _ = np.histogram(series_clean, bins=self.config.entropy_bins)
            hist = hist[hist > 0]
            probs = hist / hist.sum()
            features[f"{prefix}_binned_entropy"] = -np.sum(probs * np.log(probs + 1e-10))
        except Exception:
            features[f"{prefix}_binned_entropy"] = 0

        # Sample entropy (simplified implementation)
        try:
            features[f"{prefix}_sample_entropy"] = self._sample_entropy(series_clean, m=2, r=0.2)
        except Exception:
            features[f"{prefix}_sample_entropy"] = 0

        # Approximate entropy
        try:
            features[f"{prefix}_approximate_entropy"] = self._approximate_entropy(series_clean, m=2, r=0.2)
        except Exception:
            features[f"{prefix}_approximate_entropy"] = 0

        return features

    def _sample_entropy(self, series: np.ndarray, m: int = 2, r: float = 0.2) -> float:
        """Compute sample entropy of a time series."""
        n = len(series)
        if n < m + 2:
            return 0

        # Normalize r by std
        r = r * np.std(series)
        if r == 0:
            return 0

        def _count_matches(template_length):
            count = 0
            templates = np.array([series[i : i + template_length] for i in range(n - template_length)])
            for i in range(len(templates)):
                for j in range(i + 1, len(templates)):
                    if np.max(np.abs(templates[i] - templates[j])) < r:
                        count += 1
            return count

        a = _count_matches(m)
        b = _count_matches(m + 1)

        if a == 0 or b == 0:
            return 0

        return -np.log(b / a)

    def _approximate_entropy(self, series: np.ndarray, m: int = 2, r: float = 0.2) -> float:
        """Compute approximate entropy of a time series."""
        n = len(series)
        if n < m + 2:
            return 0

        r = r * np.std(series)
        if r == 0:
            return 0

        def _phi(m_val):
            patterns = np.array([series[i : i + m_val] for i in range(n - m_val + 1)])
            counts = np.zeros(len(patterns))
            for i, pattern in enumerate(patterns):
                for other in patterns:
                    if np.max(np.abs(pattern - other)) < r:
                        counts[i] += 1
            counts = counts / len(patterns)
            return np.sum(np.log(counts + 1e-10)) / len(patterns)

        return _phi(m) - _phi(m + 1)

    def _extract_energy(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract energy-based features (tsfresh-inspired)."""
        features = {}
        prefix = col

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 2:
            return features

        # Absolute energy: sum of squared values
        features[f"{prefix}_abs_energy"] = np.sum(series_clean**2)

        # Mean absolute change
        features[f"{prefix}_mean_abs_change"] = np.mean(np.abs(np.diff(series_clean)))

        # Mean second derivative central
        if len(series_clean) >= 3:
            second_deriv = series_clean[2:] - 2 * series_clean[1:-1] + series_clean[:-2]
            features[f"{prefix}_mean_second_deriv_central"] = np.mean(second_deriv)

        # Root mean square
        features[f"{prefix}_rms"] = np.sqrt(np.mean(series_clean**2))

        # Crest factor (peak/rms)
        rms = features[f"{prefix}_rms"]
        if rms > 0:
            features[f"{prefix}_crest_factor"] = np.max(np.abs(series_clean)) / rms

        return features

    def _extract_complexity(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract complexity features (tsfresh-inspired)."""
        features = {}
        prefix = col

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 3:
            return features

        # CID_CE: Complexity-invariant distance
        diff = np.diff(series_clean)
        features[f"{prefix}_cid_ce"] = np.sqrt(np.sum(diff**2))

        # C3: Time series complexity (lag 1)
        if len(series_clean) >= 3:
            n = len(series_clean)
            c3 = np.sum(series_clean[2:n] * series_clean[1 : n - 1] * series_clean[0 : n - 2]) / (n - 2)
            features[f"{prefix}_c3"] = c3

        # Ratio of unique values to length
        features[f"{prefix}_ratio_unique_values"] = len(np.unique(series_clean)) / len(series_clean)

        # Has duplicate
        features[f"{prefix}_has_duplicate"] = 1 if len(np.unique(series_clean)) < len(series_clean) else 0

        # Has duplicate max
        max_val = np.max(series_clean)
        features[f"{prefix}_has_duplicate_max"] = 1 if np.sum(series_clean == max_val) > 1 else 0

        # Has duplicate min
        min_val = np.min(series_clean)
        features[f"{prefix}_has_duplicate_min"] = 1 if np.sum(series_clean == min_val) > 1 else 0

        # Sum of reoccurring values
        unique, counts = np.unique(series_clean, return_counts=True)
        reoccurring_mask = counts > 1
        features[f"{prefix}_sum_reoccurring_values"] = np.sum(unique[reoccurring_mask] * counts[reoccurring_mask])

        # Sum of reoccurring data points
        features[f"{prefix}_sum_reoccurring_data_points"] = np.sum(counts[reoccurring_mask])

        # Percentage of reoccurring data points
        features[f"{prefix}_pct_reoccurring_data_points"] = np.sum(counts[reoccurring_mask]) / len(series_clean)

        return features

    def _extract_counts(self, series: np.ndarray, col: str) -> dict[str, float]:
        """Extract count-based features (tsfresh-inspired)."""
        features = {}
        prefix = col

        series_clean = series[~np.isnan(series)]
        if len(series_clean) < 2:
            return features

        mean_val = np.mean(series_clean)

        # Count above mean
        features[f"{prefix}_count_above_mean"] = np.sum(series_clean > mean_val)

        # Count below mean
        features[f"{prefix}_count_below_mean"] = np.sum(series_clean < mean_val)

        # First location of maximum
        features[f"{prefix}_first_loc_max"] = np.argmax(series_clean) / len(series_clean)

        # First location of minimum
        features[f"{prefix}_first_loc_min"] = np.argmin(series_clean) / len(series_clean)

        # Last location of maximum
        features[f"{prefix}_last_loc_max"] = (len(series_clean) - 1 - np.argmax(series_clean[::-1])) / len(series_clean)

        # Last location of minimum
        features[f"{prefix}_last_loc_min"] = (len(series_clean) - 1 - np.argmin(series_clean[::-1])) / len(series_clean)

        # Longest strike above mean
        above_mean = series_clean > mean_val
        features[f"{prefix}_longest_strike_above_mean"] = self._longest_consecutive(above_mean)

        # Longest strike below mean
        below_mean = series_clean < mean_val
        features[f"{prefix}_longest_strike_below_mean"] = self._longest_consecutive(below_mean)

        # Number of crossings (mean)
        crossings = np.sum(np.diff(np.sign(series_clean - mean_val)) != 0)
        features[f"{prefix}_number_crossings_mean"] = crossings

        # Number of zero crossings
        zero_crossings = np.sum(np.diff(np.sign(series_clean)) != 0)
        features[f"{prefix}_number_zero_crossings"] = zero_crossings

        # Absolute sum of changes
        features[f"{prefix}_abs_sum_changes"] = np.sum(np.abs(np.diff(series_clean)))

        return features

    def _longest_consecutive(self, bool_array: np.ndarray) -> int:
        """Find longest consecutive True values in boolean array."""
        max_len = 0
        current_len = 0
        for val in bool_array:
            if val:
                current_len += 1
                max_len = max(max_len, current_len)
            else:
                current_len = 0
        return max_len

    def get_feature_set(self) -> FeatureSet:
        """Get the feature set with metadata."""
        return self._feature_set

fit(X, y=None, time_column=None, **kwargs)

Fit the engine to identify time series columns.

Parameters:

Name Type Description Default
X DataFrame or ndarray

Input data (each row is a time series or time-indexed data)

required
y Series or ndarray

Target variable

None
time_column str

Column containing timestamps

None

Returns:

Name Type Description
self TimeSeriesEngine
Source code in featcopilot/engines/timeseries.py
def fit(
    self,
    X: Union[pd.DataFrame, np.ndarray],
    y: Optional[Union[pd.Series, np.ndarray]] = None,
    time_column: Optional[str] = None,
    **kwargs,
) -> "TimeSeriesEngine":
    """
    Fit the engine to identify time series columns.

    Parameters
    ----------
    X : DataFrame or ndarray
        Input data (each row is a time series or time-indexed data)
    y : Series or ndarray, optional
        Target variable
    time_column : str, optional
        Column containing timestamps

    Returns
    -------
    self : TimeSeriesEngine
    """
    X = self._validate_input(X)

    # Identify numeric columns for time series analysis
    self._time_columns = X.select_dtypes(include=[np.number]).columns.tolist()

    if self.config.verbose:
        logger.info(f"TimeSeriesEngine: Found {len(self._time_columns)} numeric columns")

    self._is_fitted = True
    return self

get_feature_set()

Get the feature set with metadata.

Source code in featcopilot/engines/timeseries.py
def get_feature_set(self) -> FeatureSet:
    """Get the feature set with metadata."""
    return self._feature_set

transform(X, **kwargs)

Extract time series features from input data.

Parameters:

Name Type Description Default
X DataFrame or ndarray

Input data

required

Returns:

Name Type Description
X_features DataFrame

Extracted features

Source code in featcopilot/engines/timeseries.py
def transform(self, X: Union[pd.DataFrame, np.ndarray], **kwargs) -> pd.DataFrame:
    """
    Extract time series features from input data.

    Parameters
    ----------
    X : DataFrame or ndarray
        Input data

    Returns
    -------
    X_features : DataFrame
        Extracted features
    """
    if not self._is_fitted:
        raise RuntimeError("Engine must be fitted before transform")

    X = self._validate_input(X)
    features_dict = {}

    for col in self._time_columns:
        series = X[col].values

        for feature_group in self.config.features:
            if feature_group in self.FEATURE_EXTRACTORS:
                method_name = self.FEATURE_EXTRACTORS[feature_group]
                method = getattr(self, method_name)
                extracted = method(series, col)
                features_dict.update(extracted)

    # For DataFrames with multiple rows, extract features across the entire column
    if len(X) > 1:
        # Each column is treated as a single time series
        features_dict = {}
        for col in self._time_columns:
            series = X[col].values

            for feature_group in self.config.features:
                if feature_group in self.FEATURE_EXTRACTORS:
                    method_name = self.FEATURE_EXTRACTORS[feature_group]
                    method = getattr(self, method_name)
                    extracted = method(series, col)
                    features_dict.update(extracted)

    result = pd.DataFrame([features_dict])

    self._feature_names = list(result.columns)

    if self.config.verbose:
        logger.info(f"TimeSeriesEngine: Extracted {len(self._feature_names)} features")

    return result

TimeSeriesEngineConfig

Bases: EngineConfig

Configuration for time series feature engine.

Source code in featcopilot/engines/timeseries.py
class TimeSeriesEngineConfig(EngineConfig):
    """Configuration for time series feature engine."""

    name: str = "TimeSeriesEngine"
    features: list[str] = Field(
        default_factory=lambda: [
            "basic_stats",
            "distribution",
            "autocorrelation",
            "peaks",
            "trends",
            "entropy",
            "energy",
            "complexity",
            "counts",
        ],
        description="Feature groups to extract",
    )
    window_sizes: list[int] = Field(
        default_factory=lambda: [5, 10, 20], description="Window sizes for rolling features"
    )
    n_fft_coefficients: int = Field(default=10, description="Number of FFT coefficients")
    n_autocorr_lags: int = Field(default=10, description="Number of autocorrelation lags")
    entropy_bins: int = Field(default=10, description="Number of bins for binned entropy")