explainer¶
Feature explanation generator using LLM.
Generates human-readable explanations for features.
FeatureExplainer
¶
Generate human-readable explanations for features.
Uses LLM to create interpretable explanations that can be understood by non-technical stakeholders.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
str
|
LLM model to use |
'gpt-5.2'
|
Examples:
>>> explainer = FeatureExplainer()
>>> explanations = explainer.explain_features(feature_set, task='predict churn')
Source code in featcopilot/llm/explainer.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | |
__del__()
¶
explain_feature(feature, column_descriptions=None, task_description=None)
¶
Generate explanation for a single feature.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
feature
|
Feature
|
Feature to explain |
required |
column_descriptions
|
dict
|
Descriptions of source columns |
None
|
task_description
|
str
|
ML task description |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
explanation |
str
|
Human-readable explanation |
Source code in featcopilot/llm/explainer.py
explain_features(features, column_descriptions=None, task_description=None, batch_size=5)
¶
Generate explanations for multiple features.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
features
|
FeatureSet
|
Features to explain |
required |
column_descriptions
|
dict
|
Descriptions of source columns |
None
|
task_description
|
str
|
ML task description |
None
|
batch_size
|
int
|
Number of features to explain in each LLM call |
5
|
Returns:
| Name | Type | Description |
|---|---|---|
explanations |
dict
|
Mapping of feature names to explanations |
Source code in featcopilot/llm/explainer.py
generate_feature_report(features, X, column_descriptions=None, task_description=None)
¶
Generate a comprehensive report about features.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
features
|
FeatureSet
|
Features to report on |
required |
X
|
DataFrame
|
Data with features |
required |
column_descriptions
|
dict
|
Descriptions of source columns |
None
|
task_description
|
str
|
ML task description |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
report |
str
|
Markdown-formatted report |