redundancy¶
Redundancy elimination through correlation analysis.
RedundancyEliminator
¶
Bases: BaseSelector
Eliminate redundant features based on correlation.
Removes highly correlated features, keeping the one with higher importance (if provided) or the first one.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
correlation_threshold
|
float
|
Correlation threshold for redundancy |
0.95
|
method
|
str
|
Correlation method ('pearson', 'spearman', 'kendall') |
'pearson'
|
original_features
|
set[str]
|
Set of original feature names to prefer over derived features |
None
|
original_preference
|
float
|
Bonus added to importance scores of original features to prefer them |
0.1
|
Examples:
>>> eliminator = RedundancyEliminator(correlation_threshold=0.95)
>>> X_reduced = eliminator.fit_transform(X, y)
Source code in featcopilot/selection/redundancy.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | |
fit(X, y=None, importance_scores=None, **kwargs)
¶
Fit eliminator by computing correlations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
X
|
DataFrame or ndarray
|
Input features |
required |
y
|
Series or ndarray
|
Target variable (unused) |
None
|
importance_scores
|
dict
|
Pre-computed importance scores |
None
|
Returns:
| Name | Type | Description |
|---|---|---|
self |
RedundancyEliminator
|
|
Source code in featcopilot/selection/redundancy.py
fit_transform(X, y=None, **kwargs)
¶
Fit and transform in one step (y is optional for this selector).
Source code in featcopilot/selection/redundancy.py
get_correlation_matrix()
¶
get_removed_features()
¶
transform(X, **kwargs)
¶
Remove redundant features.