parallel¶
Parallel processing utilities.
parallel_apply(func, data, n_jobs=-1, batch_size=None, verbose=False)
¶
Apply a function in parallel across DataFrame rows.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
func
|
callable
|
Function to apply to each row |
required |
data
|
DataFrame
|
Input data |
required |
n_jobs
|
int
|
Number of parallel jobs (-1 for all CPUs) |
-1
|
batch_size
|
int
|
Batch size for processing |
None
|
verbose
|
bool
|
Show progress |
False
|
Returns:
| Name | Type | Description |
|---|---|---|
results |
list
|
Results from applying function to each row |
Source code in featcopilot/utils/parallel.py
parallel_transform(transformers, X, n_jobs=-1, verbose=False)
¶
Apply multiple transformers in parallel.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
transformers
|
list
|
List of (name, transformer) tuples |
required |
X
|
DataFrame
|
Input data |
required |
n_jobs
|
int
|
Number of parallel jobs |
-1
|
verbose
|
bool
|
Show progress |
False
|
Returns:
| Name | Type | Description |
|---|---|---|
X_combined |
DataFrame
|
Combined transformed data |